

Step Systems

Precision

SRA Clutch / Brake Step unit

Application

The Step Unit type SRA is the ideal solution for fast and accurate shaft motion in production machinery.

The SRA is especially advantageous in applications where the following is required:

- high production capacity
- high automation
- high precision and uniformity in machine operations
- great realiability
- low service costs

Typical applications are: Labelling, dosing, cutting, packaging, label printing. box folding, thermoforming, sorting, stamping.

The SRA unit is part of the Precision Step System which comprises:

- SRA & RotaStep Clutch / Brake systems
- MCS02 electronic control unit
- SRC signal sources

Fig. 2 shows the Precision Step System used for start / stop motion of feeding rollers.

The SRA step unit, the fundamental principle of the system, starts and stops the feeding rollers and shafts extremely fast and precise. At low load operation a max. cycling frequency of 1,200 to 3,600 cycles/min can be obtained.

External signal sources (proximity transducers, photocells, encoders) give start and / or stop signals to electronic control units.

These are flexible control units, adapted for various functions e.g. pulse counting, signal suppression, compensation of external influences etc.

System construction

Precision Step Systems

⊐M

M

Rotating part Stationary part Vacuum circuit

0

Data sheet SRA – Clutch / Brake systems

Fig. 3: Clutch mode

2

M

HC.

0

6 3

Image: Constraint of the stationary part image:

Function description

Fig 4: Brake mode

- 2. Brake disc
- 3. Housing
- 4. Clutch disc
- 5. Input flange
- 6. Through-going output shaft
- M₁ Solenoid valve (brake side)
- M₂ Solenoid valve (clutch side)

Data sheet SRA – Clutch / Brake systems

Function description The SRA unit is activated by vacuum. Optimum performance is obtained at a vacuum of Δp 0.7 bar.

The two solenoid valves M_1 and M_2 , direct the vacuum to the clutch and brake side respectively. When both solenoid valves are de-energised, normal pressure prevails allowing the through-going output shaft to rotate freely.

When solenoid valve M_2 , is energised, vacuum is generated between the input flange (pos. 5) and the clutch disc (pos. 4). The disc is sucked against the friction ring and the output shaft starts revolving.

The SRA is now in clutch mode (see fig. 3).

When solenoid valve M_1 , is energised and solenoid valve M_2 , is de-energised, vacuum is generated. and the brake disc (pos. 2) is sucked against the friction ring of the housing (pos. 3). The input flange rotates freely. as normal pressure prevails again. The output shaft is decelerated until standstill and is locked in this position with a holding torque.

The SRA is now in brake mode (see fig. 4)

Timing

Data sheet SRA – Clutch / Brake systems

Ordering

Туре		Code no. smooth shaft	Code no. with keyway	Symbol
SRA 10	Flange mounting	060B0022	080B3022	
SRA 15		080B0001	080B3001	
SRA 18		080B0002	080B3002	
SRA 20		080B0003	080B3003	
SRA 23	FOOT	080B0004	080B3004	
SRA 25	mounting	080B0011	080B3011	UTT
SRA 30		080B0012	080B3012	
SRA 36		080B0013	080B3013	

Technical data								
Туре	SRA 10	SRA 15	SRA 18	SRA 20	SRA 23	SRA 25	SRA 30	SRA 36
Static torque [Nm] ≥ dyn. torque	8	16	27	42	62	81	146	238
Dynamic torque [Nm]	5	11	21	33	44	57	102	167
Max. revolution n _{max} [rpm]	1,700	1,200	1,040	920	800	760	600	500
Max. heat load p _{max} [W]	70	90	113	135	158	180	271	450
Inertia torque, I _{SRA} [κgm ²]	12.1x10 ⁻⁵	7.7x10 ⁻⁵	1.08x10 ⁻³	1.85x10 ⁻³	2.96x10 ⁻³	7.27x10 ⁻³	14.8x10 ⁻³	31.1x10 ⁻³
Max. cycling frequency [rpm]	3,600	3,000	2,700	2,500	2,100	1,875	1,700	1,600
Reaction time t ₁ /t ₂ [ms]	6	7	7	8	9	10	11	15
Obtainable repeat accuracy ∆t [ms]	± 0.1	± 0.1	± 0.1	± 0.1	± 0.1	± 0.1	± 0.1	± 0.1
Ambient temperature [°C] *	0 - 40	0 - 40	0 - 40	0 - 40	0 - 40	0 - 40	0 - 40	0 - 40
Internal volume V _{SRA} [10 ⁶ m ³]	25	50	80	105	115	125	165	230
Nominal work [J]	80x10 ⁶	116x10 ⁶	168x10 ⁶	232x10 ⁶	240x10 ⁶	364x10 ⁶	544x10 ⁶	740x10 ⁶
Shaft diameter [mm]	15	25	25	25	25	40	40	40
Weight [kg]	2.7	7.65	8.4	9.35	10.2	20.0	22.6	27.0

* Only at optimum utilisation of the SRA. When not utilised fully, the ambient temperature might be higher.

Data sheet

SRA – Clutch / Brake systems

Precision Step Systems

Permissible shaft loads

SRA	F _A [N]	F _{R1K} max. [N]	F _{R1B} max.[N]		
10	250	200	400		
15	680	450	900		
18	680	450	900		
20	680	900	900		
23	680	900	900		
25	3,630	1,800	1,800		
30	3,630	1,800	1,800		
36	3,630	1,800	1,800		

Data sheet SRA – Clutch / Brake systems

Calculation and sizing To obtain optimum utilization of the SRA specifications, it is necessary to specify the operation parameters as precisely as possible. The selected SRA unit for an application is based on calculating the necessary dynamic torque. The calculation must include: the masses to be accelerated and decelerated (inertia torque I) · revolutions/minute cycling frequency acceleration and deceleration time required service interval required Repeat accuracy ⊿ t [ms] Repeat accuracy 0.5 0,4 0,3

0,2

0 +

10 20 30

The obtainable repeat accuracy of the SRA step unit depends on the actual acceleration or deceleration time.

The relation between acceleration or deceleration time and repeat accuracy is shown in fig. 8.

70

50 60

40

90

80

100 [ms]

 t_{3}/t_{4}

Sizing

To select the correct SRA size the following must be known:

- n rotational speed [rpm]
- I inertia torque [kgm²]
- t acceleration or deceleration time [s]

Fig 8 – Acceleration and deceleration time

- (max. 0.025 s when high repeat accuracy is required)
- F frictional force [N]
- r radius of feeding roller [m]

Calculation of these data is made on the basis of plant specifications such as measurements of feed rollers, chains etc., cycling frequency, max. feeding length or turning angle an time available per cycle. The sizing is made according to the formula:

$$M = \frac{\sum I \times 2 \times \pi \times n}{60 \times t} + (F \times r) [Nm]$$

Repeat accuracy of the SRA is expressed by the time in ms. The tolerance of the required feeding length is the length to be reached in 0.1 ms e.g.:

 $\Delta s = v \times \Delta t$ v = 1 m/s $\Delta t = 0.0001 \text{ s}$ $\Delta s = (1 \times 0.0001) \text{ m}$ = 0.1 mm

Hidden tolerance factors that might appear cannot be accumulated in the repeat accuracy calculation.

Sizing examples are available from MSW Motion Control GmbH and the technical department are at your service with any required calculation as well as their application experience. Calculation examples for the determination of:

- Mass moment of inertia - Rotational speed - Acceleration and deceleration time

- Speed Torque Repeatability
- Lifetime etc. are available and can be requested if required.

Data sheet

SRA – Clutch / Brake systems

Dimensions SRA 10

Turne	Dimensions [mm]												
туре	Н	H1	H ₂	В	B1	L	L1	L2	L ₃	L4	L ₅	L7	L ₈
SRA 15	100	195	6.5	140	162	326	112	90	50	74	44	19	14.0
SRA 18	100	195	6.5	140	162	326	112	90	50	74	44	19	14.0
SRA 20	125	220	9.0	140	162	326	112	90	50	74	44	19	14.0
SRA 23	125	220	9.0	140	162	326	112	90	50	74	44	19	14.0
SRA 25	160	270	12.5	230	261	437	149	125	58	105	62	27	16.5
SRA 30	160	270	12.5	230	261	437	149	125	58	105	62	27	16.5
SRA 36	200	310	12.5	230	261	437	149	125	58	105	62	27	16.5

Dimensions SRA 15 - 36

Precision Step Systems

Data sheet

SRA – Clutch / Brake systems

Shaft dimensions SRA 15 - 36

Tumo	Dimensions in [mm]											
туре	øD	ø D1		ø D2		ø D3	ø D4 ø D5		М	Ν		
SRA 15	160	70	-0.02 -0.05	25	-0.012 -0.023	100	85	54	3 x M8 x 20 (120°) ∲ ø 0.3	4 x ø 10.5		
SRA 18	186	70	-0.02 -0.05	25	-0.012 -0.023	100	85	54	3 x M8 x 20 (120°) ∲ ø 0.3	4 x ø 10.5		
SRA 20	211	70	-0.02 -0.05	25	-0.012 -0.023	100	85	54	3 x M8 x 20 (120°) ∲ ø 0.3	4 x ø 10.5		
SRA 23	237	70	-0.02 -0.05	25	-0.012 -0.023	100	85	54	3 x M8 x 20 (120°) ∲ ø 0.3	4 x ø 10.5		
SRA 25	263	70	-0.02 -0.05	40	-0.014 -0.025	118	100	89	3x M10 x 25 (120°) ⊕ Ø 0.3	4 x ø 12.5		
SRA 30	315	70	-0.02 -0.05	40	-0.014 -0.025	118	100	89	3x M10 x 25 (120°) ∲ ø 0.3	4 x ø 12.5		
SRA 36	366	70	-0.02 -0.05	40	-0.014 -0.025	118	100	89	3x M10 x 25 (120°) ⊕ ø 0.3	4 x ø 12.5		

Electrical connections SRA 10 and SRA 15 - 36

1: Solenoid valve clutch side 2: Solenoid valve brake side

3: Common conductor

Data sheet

Precision Step Systems" is a line of products from ATB Laurence Scott

Worldwide Sale Organisation

MSW Motion Control GmbH

MSW Motion Control GmbH can accept no responsibility for possible errors in catalogues, brochures and other printed material and reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequential changes being necessary in specifications already agreed.

MSW Motion Control GmbH

Vertriebsgesellschaft Schloßstr. 32/34, 33824 Werther (Westf.) Deutschland anfrage@msw-motion.de www.msw-motion.de Tel.: +49 (0)5203 919200

Errors and technical changes excepted.

Version: 29 April 2022

© MSW Motion Control GmbH Vertriebsgesellschaft